\(N(\mu,\sigma^2)\)
|
Normal distribution with mean \(\mu\) and variance \(\sigma^2\).
|
p.d.f.
|
Probability density function.
|
CDF
|
Cumulative distribution function.
|
\(z_p\)
|
\(p^{th}\) quantile of the \(N(0,1)\) distribution.
|
\(\Phi(\cdot)\)
|
The CDF of the \(N(0,1)\).
|
\(\phi(\cdot)\)
|
The density function of the \(N(0,1)\).
|
\(\chi^2_n\)
|
Chi-squared distribution on \(n\) degrees of freedom.
|
\(t_n\)
|
Student’s t distribution on \(n\) degrees of freedom.
|
\(F_{m,n}\)
|
F distribution with numerator degrees of freedom \(m\) and denominator degrees of freedom \(n\).
|
i.i.d.
|
Independent and identically distributed.
|
\(E(X)\)
|
Expected value of \(X\).
|
\(Var(X)\)
|
Variance of \(X\).
|
\(se(\hat \beta)\)
|
Standard error of \(\hat \beta\)
|
\((m_1,m_2)^{\prime}\)
|
Transpose of \((m_1,m_2)\).
|
\(S_x\)
|
Sample standard deviation of \(x=(x_1,\ldots,x_n)\).
|
FWER
|
Family wise error rate.
|
\(F_{a,b}(\delta)\)
|
Non-central \(F\) distribution with numerator and denominator degrees of freedom \(a,b\) and non-centrality parameter \(\delta\).
|